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Motivation for SWIRP (Submm-Wave and IR Polarimeter): 
Cloud Ice and Radiation
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LW and SW biases are opposite and 
cancelled out in the net TOA radiation 
by wrong reasons (Ice clouds)
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• Cloud ice is a major source 
of uncertainties in climate 
models;

• Cloud ice is a tuning 
parameter to balance 
radiation at top and 
precipitation at bottom;

• Cloud ice varies by four 
orders of magnitude with a  
strong diurnal cycle.

TOA Radiation Bias of Reanalysis vs CERES



TOA Radiation Bias in Climate Models

TOA Shortwave (SW) BiasTOA Longwave (LW) Bias

TOA Radiation Bias of CMIP6 Models vs CERES
Li et al. (2020) 

LW and SW biases are opposite and cancelled in 
the net radiation by wrong reasons (Ice clouds)



Observation Limitations and Gaps
Gap in Height Coverage:
• Lack of cloud ice measurements 

in the mid-to-upper 
troposphere;

• Lack of observational constraints 
on ice cloud processes;

Gap in Cloud Sensitivity:
• Limitation of IR sensitivity to 

cloud top;

• Limitation of microwave to liquid 
cloud and surface precipitation;

• Submm-wave radiometer to fill 
the gap in cloud ice 
measurements;

• Polarimetric channels to 
measure ice particle shape and 
orientation. (Courtesy of J. Gong)
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Polarimetric Difference
In GMI 89 and 166 GHz 

Radiances

• “Bell-Shape” in the TB vs V-H 
relationship from cloud ice

• Larger V-H in the leading edge of squall 
line storms

• Similar magnitudes (~10 K) of V-H at 89 
and 166 GHz

• V-H differences account for 10-30% 
cloud scattering signals at TB=200-270K

• Stronger ocean surface polarization 
contributions at 89 GHz, compared to 
166 GHz

Gong and Wu (2017, ACP)
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Polarized Cloud Radiances at IR?

• No polarimetric IR 
measurements of ice cloud 
scattering;

• Model simulations suggest 
observable polarization 
difference (PD) radiances

• PD to provide additional 
information on cirrus ice 
particle shape/orientation
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Takano and Liou (1993)

Coy et al. (2020)
• Simulations from 

Atmospheric Radiative 
Transfer Model (ARTS)

• Optically thin cirrus layer 
(9-11 km)

• Roughened hexagonal 
8-column aggregates 
with random orientation
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• Flight altitude 400km; Swath 700 km
• Conical scan rate:  17.6 rpm
• Integration time: 21.2 ms (220 GHz), 10.6 ms (680 GHz), 10.6 ms (11 µm)
• Submm primary reflector 3dB diameter : 6.7 cm  
• Footprints/FOVs: 220 GHz (20 km /1.6°), : 680 GHz (10 km /0.8°), 11 µm (10 km/0.8°)
• Submm polarimetric receivers: 

• 680 GHz (V, H), 2x: direct detection (baseline)
• 220 GHz (V, H), 1x direct detection

• LWIR polarimeter: 
• 8-11µm channeled spectropolarimeter

• Data rate: 22.3 kbps

SWIRP Parameters and Requirements
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IR Channeled-SpectroPolarimeter (IRCSP) 
from Univ of Arizona

(R. Chipman, K. Hart, M. Kupinski, C-J Oh)

SWIRP Development

Submm Polarimetric Receivers from NGC
(W. Dell, C. Cooke)(Courtesy of P. Pantina)

220 GHz 
Receiver
(Cooke et 
al. 2019)

2x 680 GHz 
Receivers

Hart et al. (2020)



Calibration and Near Space Deployment of LWIR 
Channeled Spectro-Polarimeter

❖The Polarization Lab, in collaboration with a team at NASA 
Goddard Flight Center, has developed the Infrared Channeled 
Spectro-Polarimeter (IRCSP). 

❖A novel instrument designed to collect polarimetric data of 
thermal radiation from ice crystals in cirrus clouds as part of a 
CubeSat payload

❖A clone instrument was constructed in 2020 for testing at UA 
and support of instrument at GSFC

❖ In person work is being done to test and optimize calibration 
and polarimetric retrievals for broadband LWIR radiation

❖Successful 2020 FINESST proposal is supporting work to adapt 
clone instrument for a piggyback high altitude balloon flight 
through CSBF
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Kira A. Hart, Meredith K. Kupinski, Dong L. Wu, Russell A. Chipman, "First results 
from an uncooled LWIR polarimeter for cubesat deployment," Opt. Eng. 59(7) 075103 
(3 July 2020) https://doi.org/10.1117/1.OE.59.7.075103

University of Arizona Team
Kira Hart Shanks (FI FINESST), PhD Candidate in Optical Science
Dr. Russell Chipman (Co-PI SWIRP), Professor of Optical Science

Dr. Meredith Kupinski (PI FINESST) , Research Professor of Optical Science
Jeremy Parkinson, Masters Student in Optical Science

Assembled IRCSP Instrument



Broadband Polarized Characterization and Calibration

4-Jun-21 12

• Large aperture wire grid polarizer is rotated in 
front of blackbody target

• As AOLP varies, the fringes at the focal plane shift

• Current work focused on fully characterizing and 
calibrating out instrumental polarization and stray 
thermal radiation

IRCSP

Wiregrid polarizer 

Blackbody
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Motivation for High Altitude Balloon Flight 

❖ In support of the greater SWIRP project, UofA is 
moving forward with a high-altitude piggyback 
flight as proposed in the 2020 FINESST award

❖ Confirm the instrument performance the near 
space environment, test response to thermal and 
mechanical shock  

❖ Required the design and testing of an enclosure
➢ Environmental regulation system, that protects the 

IRCSP.
➢ Communication system of the telemetry that obtains 

GPS information from the balloon’s consolidated 
instrument package (CIP).

➢ Data Management System that will retrieve, parse 
and store data 

➢ Battery distribution timeline that will power 
subsystems throughout the flight FINESST 2020 Proposal: High-altitude balloon demonstration

and observations with a novel LWIR spectro-polarimeter for
future CubeSat applications. K.Hart, M. Kupinski.
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Involvement of Senior Engineering Capstone Team
• Interdisciplinary team of undergraduate students to assist in the design 

of the balloon payload as their senior capstone project

• Team was responsible for the design of the mechanical, thermal, and 
data storage for the IRCSP balloon payload 

• Final project video can be found at: https://youtu.be/c5BzKVGUZ2w
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Installation of IRCSP in Balloon Payload

Fan to simulation motion

Single board computer4-Jun-21 15

❖ Instrument is contained in aluminum housing with front 
lens of the IRCSP as the front aperture

❖ Thermal Electric Coolers are configured to both heat and 
cool the enclosure to keep the the instrument within 
thermal limits and prevent condensation during take-off 
and landing

❖ Single board computer controls data acquisition and 
storage in addition to controlling TECs and stepper 
motor for push broom scanning

❖ In lab the housing and TECs can be used to simulate 
performance at a variety of operating temperatures 



Summary

• Ice clouds remain as a major source of uncertainties in climate 
models and prediction
• Lack (in sensitivity and mid-to-upper troposphere) of reliable 

cloud ice measurements means poor observational constraints 
on ice cloud processes and their radiation properties
• Compact submm-wave cloud radiometer-polarimeters such as 

SWIRP will fill the observation gaps and enable new sciences


